
 
 

Natural Language Processing Techniques and Applications 
 
Hello HAL!  Was the first appearance of a speaking and thinking robot in the 1968 film 2001: A 
Space Odyssey.  HAL (Heuristically programmed ALgorithmic computer) was a sentient artifi-
cial general intelligence computer that controlled the systems of the Discovery One spacecraft 
and interacted with the ship's astronaut crew.  In fact, NLP received widespread recognition in 
the 1950s, when researchers and linguistics experts began developing machines to automate lan-
guage translation.  
 
Today, Natural language processing (NLP) is a branch of artificial intelligence aimed at giving 
computers the ability to use and understand human language and speech. Technology features we 
take for granted every day are a product of NLP and deep learning.  NLP field encompass the en-
tire cycle of recognizing and understanding human speech, processing natural language, and gen-
erating text that can be read and interpreted by humans. Whenever you dictate a text message to 
Siri or ask Alexa the weather, that’s natural language processing. When our email services filter 
out spam, check our spelling and grammar, and even autocomplete entire messages, that’s NLP 
too. 
 
A common data type (especially on the internet) is text data. Text data representation is im-
portant, but it is also challenging. It requires preprocessing and specific domain knowledge. 



 

What is NLP? 
 
NLP is giving computers the ability to use and understand human language and speech.  Com-
mon, everyday NLP examples are: 
 

• dictate a text message to Siri or ask Alexa the weather 
 

• when our email services filter out spam,  
 
• check our spelling and grammar, and even autocomplete entire messages 

	
 

 
Figure 1 – The NLP Defined 
 
NLP has been growing steadily for the past couple of decades due to the explosive growth of tex-
tual data called “unstructured” data.  Today, 80% of all data created are unstructured like twitter 
and newsfeeds and reports, etc. as shown below (courtesy of Ravenpack). 
 
  



Why NLP? 
 
A growth history of machine learning and NLP is shown below: 
 

Figure 2 – Why NLP?   
 
Natural Language Processing hit its big stride back in 2017 with the introduction of Transformer 
Architecture from Google called BERT.  Since then, OpenAI introduced GPT series.  These plat-
forms have been built on what is called the Transformer architecture with performance results 
that handily beat existing state-of-the-art benchmarks. 
Transformers have taken the world of NLP by storm in the last few years. Now they are being 
used with success in applications beyond NLP as well.  These state-of-the-art approaches have 
helped bridge the gap between humans and machines and helped us build bots capable of using 
human language undetected. It’s an exciting time. In addition, new frameworks have been devel-
oped for NLP to continue that innovation.   
 
Language is one of the great untapped resources of information. With the rich and growing eco-
system, we can now access this raw data, with many options to process this kind of data.  
  



Key Capabilities of Natural Language Processing 
 

 
Figure 3 – Key Technical Capabilities of NLP   
 

• Sentiment analysis is the interpretation and classification of emotions (positive, negative 
and neutral) within text data using text analysis techniques. 

• Topic modeling is a method based on statistical algorithms to help uncover hidden topics 
from large collections of documents. 

• Text categorization sorts texts into specific taxonomies following it being trained by hu-
mans.  

• Text clustering is a technique used to group text or documents on similarities in content. 
• Information extraction is used to automatically find meaningful information in unstruc-

tured text. 
• Named entity resolution is a method that extracts the names of people, places, organiza-

tions, and more and classifies them into predefined labels and links the named entities to 
a specific logic. 

• Relationship extraction is a capability that helps establish semantic relations between 
entities. 

Key applications of NLP in Finance 
 

• Legal and compliance – ex: Contract Intelligence (COIN) by JP Morgan 
• Sentiment analysis – earnings call, news analytics, insider transactions. Ex: S&P senti-

ment analysis 
• Deutsche Bank ESG analysis 
• Speech recognition – speech to text/text to speech, voice bots/chat bots 
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• Reconciliation and dispute resolution – detecting failed trades by BNY 
• Content enrichment – retrieval, trends, relationship between entities, due diligence 

screening 

4-Step NLP Development Framework 
 
An extensive ecosystem of technologies and best practices have been developed for NLP.   
 
To leverage the ecosystem efficiently, we provide a 4-step framework for NLP development as 
displayed in the following figure:  
 

 
Figure 4 – The 4-Steps NLP framework 
 
We will explain each one of these steps in more detail next. 

Step 1: Pre-processing od Text Data 
 
Text data is considered unstructured and meant for human consumption and not for computers.  
Words vary in length and order, and documents vary in word count.  Sentences may contain 
grammar issues, random punctuation, and synonyms.   Terminology and abbreviations in one in-
dustry may not apply to others.  As a result, the context of the text data must be considered (text 
has linguistic structure). As a data type, text is considered “dirty”. Therefore, vast amount of text 
data needs to be converted into a form useable by computers. This process of Making these 
changes to our text before turning them into word sequences is called pre-processing.  
Cleaning and preparing text are called pre-processing.  There are best practices steps in pre-pro-
cessing of text data shown in figure below. 
 



 
Figure 5 – Pre-processing steps of text data 
 
A simple approach is to assume that the smallest unit of information in a text is the word (as op-
posed to the character). To start the pre-processing step, we define the term Tokenization which 
is the process of breaking the text into pieces. Therefore, we will be representing our texts 
as word sequences. For instance, if the text is: This is a cat. Then, the word sequence is [this, is, 
a, cat]. In this example, we removed the punctuation and made each word lowercase because we 
assume that punctuation and letter case don’t influence the meaning of words. In fact, we want to 
avoid making distinctions between similar words such as ‘This’ and ‘this’ or ‘Cat’ and ‘cat’.  
 
Moreover, real life text is often “dirty” since text is usually automatically scraped from the web 
with HTML code getting mixed with the actual text. To clean up these texts, we drop the HTML 
code words in our word sequences. For example, [<div>This is not a sentence], is converted to: 
[this, is, not, a, sentence].  
 

 
Figure 6 – Pre-processing of Text Data 
 



Despite being very simple, the pre-processing techniques work very well in practice. Depending 
on the kind of text you may encounter, it may be relevant to include more complex pre-pro-
cessing steps.  
 
Pre-processing extent depends on the follow-on vectorization methods.   For example, for the 
term frequency analysis, the following steps are typically applied for pre-processing:  
 

• Normalization by making every term as lowercase 
• Remove punctuation/stop words (called common words) 
• Stemming by removing suffixes (e.g., plural words) 
• Lemmatization which is producing one term for all variations (e.g., tests, tested, testing to 

just test or iPhone and iphone) 
• Correct spelling mistakes 
• Recognize abbreviations 
• Remove rare words 
• Removes words like and, the, of, and on 
• Numbers may also be discarded, but it depends on the context. 

Step 2: Vectorization 
 
Now that we have a way to extract information from text in the form of word sequences, we need 
a way to transform these word sequences into numerical features, this is vectorization. 
 
The simplest text vectorization technique is Bag OF Words (BOW).  BOW starts with a list of 
words called the Vocabulary which is the output of pre-processing of raw text.  Then, given an 
input text, using the vocabulary, BOW creates the output – a numerical vector which is simply 
the vector of word counts for each word of the vocabulary.   
 

 
Figure 7 – Vectorization of text data 
 
 
 



To see how the BOW vectorization works, we look at an example with the raw text as:  
• ["This is a good cat", "This is a bad day"] 

Applying the pre=processing method we discussed in the earlier section, we get the vocabulary 
as: 

• [this, cat, day, is, good, a, bad] 
 
And the numerical representation of new text comes out as: 

• "This day is a good day" --> [1, 0, 2, 1, 1, 1, 0] 
 
As we can see, the values for “cat” and “bad” are 0 because these words don’t appear in the vo-
cabulary.  This is demonstrated in the figure below. 
  

 
Figure 8 – Vectorization with the Bag of Words   
 
Using BOW is making the assumption that the more a word appears in a text, the more it is rep-
resentative of its meaning. Therefore, we assume that given a set of positive and negative text, a 
good classifier will be able to detect patterns in word distributions and learn to predict the senti-
ment of a text based on which words occur and how many times they do. 
 
To use BOW vectorization in Python, we can rely on CountVectorizer from the scikit-learn li-
brary. In addition to performing vectorization, it will also allow us to remove stop words (i.e., 
very common words that don’t have a lot of meaning, like this, that, or the).  Moreover, we can 
use our own custom pre-processing function from earlier to automatically clean the text before 
it’s vectorized. 
 
The BOW method assumes that:  
 

• Every document is a collection of words 
• Each individual word is equally important 
• Ignores grammar, sentence structure, word order, and punctuation 

 



Where the benefits are: 
 

• The process counts the frequency of tokens 
• The implementation is very easy 
• The classification and feature extraction applications can be based on this technique 

 
However, there are shortcoming in this method: 

• The tokens increase in the bag as the length of the data increases 
• The sparsity in the matrix will also increase as the size of the input data increases. The 

number of zeros in the sparsity matrix is more than non-zero numbers 
• There is no relationship/semantic connection with each other because the text is split into 

independent words 
 

 
Figure 9 – Benefits and Challenges for the BOW Method   

Stock Sentiment Analysis with BOW: 
 
Sentiment analysis aims to estimate the sentiment polarity of a body of text based solely on its 
content. The sentiment polarity of text can be defined as a value that says whether the expressed 
opinion is positive (polarity=1), negative (polarity=0), or neutral. In this analysis, we will as-
sume that texts are either positive or negative, but that they can’t be neutral. Under this assump-
tion, sentiment analysis can be expressed as the following classification problem: 
We need to transform the main feature — i.e., a succession of words, spaces, punctuation and 
sometimes other things like emojis — into some numerical features that can be used in a learning 
algorithm. To achieve this, we will follow two basic steps: 
 

• A pre-processing step to make the texts cleaner and easier to process 
• And a BOW vectorization step to transform these texts into numerical vectors 

 



 
Figure 10 – Sentiment Analysis Methods 
 
In this use case, by S&P 500, we capture the historical relationship of Apple Inc.’s sentiment 
level changes from its earnings calls and its forward returns until the next call (Figure below). 
The changes in sentiment are defined as quarter-over-quarter (QoQ) changes from four quarters 
ago (to account for seasonality). The sentiment of each of Apple’s earnings calls is defined by 
the proportion of negative words in its earnings call transcript where the classification of both the 
negative and the master word list is based on the Loughran and McDonald (2011) financial dic-
tionary. Because sentiment in this use case is measured with negative words, positive (negative) 
changes reflect sentiment deterioration (improvement). Apple’s forward returns until its future 
calls have been shifted back a quarter such that its sentiment changes and its forward returns are 
aligned vertically in the Exhibit. One promising observation is that the Pearson correlation is 
about -0.30 since Q1 2009, which suggests that Apple’s forward returns historically go down 
when its sentiment deteriorates.  
 

 
Figure 11 – Stock Sentiment Analysis  
 



Vectorization with Term Frequency (TF), Inverse Document Frequency 
(IDF) and TF-IDF: 
 
Another vectorization method is IF-IDF as following: 
 
Putting aside anything fine-tuning related, there are some changes we can make to immediately 
improve the current BOW model. The first thing we can do is improve the vectorization step. In 
fact, there are some biases attached with only looking at how many times a word occurs in a text. 
In particular, the longer the text, the higher its features (word counts) will be. 
 
To fix this issue, we can use Term Frequency (TF) instead of word counts and divide the number 
of occurrences by the sequence length. We can also downscale these frequencies so that words 
that occur all the time (e.g., topic-related or stop words) have lower values. This downscaling 
factor is called Inverse Document Frequency (IDF) and is equal to the logarithm of the inverse 
word document frequency. Put together, these new features are called TF-IDF features.  
 

 
Figure 12 – TF-IDF Analysis  
 
There are two methods in TF-IDF in the sklearn library: TF-IDF Vectorizer and TF-IDF Trans-
former.  

• The TF-IDF Vectorizer method, takes the raw data as input and does further process.  
• The TF-IDF Transformer, takes the output of the bag of words and does the further pro-

cess.  
The TF-IDF implementation tries to get information from the uncommon words. 
 
So, in summary, for computing TF-IDF features, we can train a new Linear SVM on TF-IDF fea-
tures simply by replacing the CountVectorizer with a TfIdfVectorizer. This results in an im-
proved accuracy over using BOW features. 
 



Use Case with TF-IDF: 
 
How can a search engine find the best document given certain search words?  
 
To accomplish this task, we measure TF and IDF for the search word and the documents that 
might be chosen.  We follow the steps below: 
 

• Compute the number of times the word appears in the document divided by number of 
words in the document 

• Compute Inverse document frequency (IDF) by taking the logarithm of number of docu-
ments divided by number of documents containing the word 

• TF-IDF is the product of the two measures above 
 
Results – Relevance of the document = Sum of the TF-IDFs across the search words 
 

 
Figure 13 – TF-IDF for Information retrieval  

Vectorization with N-gram Method: 
 
The second thing we can do to further improve the TF-IDF model is to provide it with more con-
text. In fact, considering every word independently can lead to some errors. For instance, if the 
word ‘good’ occurs in a text, we will naturally tend to say that this text is positive, even if the ac-
tual expression that occurs is actually ‘not good’. These mistakes can be easily avoided with the 
introduction of N-grams. An N-gram is a set of N successive words (e.g., very good [ 2-gram] 
and not good at all [4-gram]). Using N-grams, we produce richer word sequences. For example, 
with N=2: This is a cat. becomes [this, is, a, cat, (this, is), (is, a), (a, cat)]. In practice, including 
N-grams in our TF-IDF vectorizer is as simple as providing an additional parameter n-gram 
range (=1, N). Generally speaking, the use of bi-grams improves performance, as we provide 
more context to the model, while higher-order N-grams have less obvious effects. 
 



 
Figure 14 – N-gram Vectorization  
 
Challenges with TF-IDF and N-gram methods: 
 

• Pros of TF-IDF: It slightly overcomes the semantic information between tokens.  
• Issue: TF-IDF: This method gives chance for the model to overfit. Not so much a seman-

tic relationship between the tokens. 
• Issue: N-gram method increases vector size 

 

 
Figure 15 – Challenges for Vectorization with TF-IDF and N-grams 
 

Next Generation Vectorization – Word Embedding: 
 
Word embedding is a process to convert words/tokens into numbers (i.e., vectors) for the pur-
pose of analysis by natural language models.  To perform word embedding, first, we create 
words or tokens from a corpus of text as we mentioned in the earlier sections.  In the typical NLP 
project, we can easily produce a very large vocabulary of words, let’s say around 100,000. We 
will then assign a number to each word in the vocabulary. The first word in our vocabulary will 



be number 0. The second word will be number 1, and so on up to number 99.998. Then we repre-
sent every word as a vector of length 100,000, where every single item is a zero except one cor-
responding to the index of the number that the word is associated with. This is called the “one-
hot” encoding for words. Consider an example with only three words in our vocabulary: ‘apple’, 
’banana’ and ‘king’.  The one hot encoding vector representations of these words would be the 
following. If we then plotted these word vectors in a 3-dimensional space, we would get a repre-
sentation like the one shown in the following figure, where each axis represents one of the di-
mensions that we have, and the icons represent where the end of each word vector would be. 

 

 
Figure 16 – One-hot Encoding 

As we can see, the distance from any vector (position of the icons) to all the other ones is the 
same: two size 1 steps in different directions. This would be the same if we expanded the prob-
lem to 100,000 dimensions, taking more steps but maintaining the same distance between all the 
word vectors. However, the one-hot encoding present several challenges: 

• One-hot encodings are very inefficient. They are huge empty vectors with only one item 
having a value different than zero. They are very sparse and can greatly slow down our 
calculations.  

• Ideally, we would want vectors for words that have similar meanings or represent similar 
items to be close together [in a meaning dimensional space], and far away from those that 
have completely different meanings.  

• The one-hot encoding doesn’t account for the context or meaning of the words, all the 
words vectors have the same distance between them and are highly inefficient.  



Word embeddings solve these problems by representing each word in the vocabulary by a fairly 
small (150, 300, 500 dimensional) fixed size vector, called an embedding, which is learned dur-
ing the training. These vectors are created in a manner so that words that appear in similar con-
texts or have similar meaning are close together, and they are not sparse vectors like the ones de-
rived from one-hot embeddings. 
 

Figure 17 – Word Embedding 

If we had a 2-dimensional word embedding representation of our 4 words vocabulary [king, 
queen, apple, banana] and plotted it on a 2D grid, it would look something like the following fig-
ure. 

Figure 18 – Word Embedding with Relationships 



As we can see, the word embedding representations of the words ‘apple’ and ‘banana’ are closer 
together than to the words like ‘king’ and ‘queen’. So, words with similar meanings are close to-
gether when we use word embeddings. The embedding method also allows us to operate with 
word embeddings, using representations of words to go from a known word to another one. If we 
subtract the word embedding of the word ‘royal’ from the embedding of the word ‘king’ we ar-
rive somewhere near the embedding of the word ‘man’. In a similar manner, if we subtract the 
embedding of ‘royal’ from the embedding of queen, we arrive somewhere near the embedding of 
the word ‘woman’, which means the algorithm has discovered the notion of ‘Gender’! 

Lastly, as we can see in the word embedding vectors, they usually have a smaller size (2 in our 
example, but most times they have 150, 200, 300, or 500 dimensions) and are not sparse, making 
calculations with them much more efficient than with one-hot vectors. 

How are Word Embeddings Built? 

Word embeddings are built by learning from [training] data. Artificial neural networks (deep 
learning) can learn word embeddings.  The main objective of this learning is to build a matrix E, 
that can translate a one-hot vector representing a word, to a fixed sized vector that is the embed-
ding of such word. Let's see a very high-level example of one way this could be done. 

Consider the sentence “I love drinking apple smoothies’. If we remove the word ‘apple’ we are 
left with the following incomplete sentence: ‘I love drinking __ smoothies’.  Naturally, you 
would guess words like ‘banana’, ‘strawberry’, or ‘apple’, which all have a similar meaning, and 
usually appear in similar contexts. One of the main ways to learn word embeddings, is by a very 
similar process performed by algorithms – by guessing missing words in a huge corpus of text 
sentences. 

Key takeaway: An embedding matrix E (the matrix that translates a one hot embedding into a 
word embedding vector) is calculated by training an Artificial Neural Network to predict missing 
words, in a similar manner to how the weights and biases of the network are calculated.  

In practice, you can avoid training your own word embeddings, as there are publicly available 
word embeddings built from various corpuses (like Wikipedia or Twitter GloVe Word embed-
dings). 

What are the most popular word embeddings? 

The two most used Word embedding algorithms are Word2Vec and GloVe.  

• Word2Vec is a group of related models that produce word embeddings by using two-
layer, shallow artificial neural networks that try to predict words using their context 
(Continuous bag of words — CBOW), or to predict the context using just one word 
(Skip-gram model).  
 

• GloVe, short for Global Vectors, the GloVe algorithm calculates word embeddings by 
using a co-occurrence matrix in between words. This matrix is built by reading through a 
huge corpus of sentences and creating a column and a row for every unique word it finds. 
For every word, it registers how many times it appears in the same sentence with other 

https://nlp.stanford.edu/projects/glove/


words using a specific window size, so it also has a measure of how close together two 
words are in a sentence. 

Step 3: Language Modeling 
 
In the last few years, the NLP field has greatly benefited from the scale roll out of Deep Neural 
Networks (DNNs), due to their high performance with less need of engineered features. Alt-
hough, several ML models have been used in the last decade, DNNs have been the driver of a 
paradigm shift in language modeling.   
 

  
Figure 19 – Language Modeling for NLP 
 
Up until a few years ago, when dealing with NLP, what most people and organizations were do-
ing was using recurrent neural networks, or RNN, a branch of deep neural learning.  Recurrent 
Neural Networks (RNN) are a type of neural network where the output from previous step is fed 
as input to the current step. In traditional neural networks, all the inputs and outputs are inde-
pendent of each other, but in cases like when it is required to predict the next word of a sentence, 
the previous words are required and hence there is a need to remember the previous words. 
Therefore, the approach with RNN seemed like a more “natural” approach due to the inherent 
sequential structure of text, a.k.a. the fact that each word comes after another.  While still widely 
used in business applications, the technique has revealed challenges because RNNs are inher-
ently sequential, it is very hard to parallelize their training or their inference. This, along with 
their high memory bandwidth usage (as such, they are memory-bandwidth-bound, rather than 
computation-bound), makes them hard to scale.  
 

Use Case: Deutsche Bank ESG Evaluation 
 
Deutsche Bank decided to develop alternative ways to analyze sustainability reports, in order to 
gauge if companies are truly aligning their business with sustainable practices. They decided to 
investigate independently whether the commitments firms make to reducing carbon emissions 
were associated with actual achieved sustainability performance. 
 



The bank researchers analyzed carbon-related discussions within the reports using topic model-
ing and identified five different topics, along with the top keywords associated with each topic.  
Companies were then ranked based on their focus on the mitigation and adaptation topics. The 
NLP system also scanned for numbers and quantitative words (like ‘first’ and ‘half’), and for ac-
tive (vs. passive) language. 
 
As a result, the bank found that companies using highly active and numeric language have, on 
average, a 74% chance of reducing their future emissions. Also, companies that frequently dis-
cuss mitigating or adapting to climate change have a 65% higher chance of achieving reductions. 
 

 
Figure 20 – Topic Modeling with NLP 
 

Use Case: JP Morgan Contract Intelligence COIN 
 
Feature selection speeds up contract reviews – JP Morgan Chase implemented a program called 
COIN, which stands for Contract Intelligence. The NLP system identifies and categorizes re-
peated clauses. It does so by classifying clauses according to about 150 different “attributes” 
(Also known as features).  COIN analyses contract documents to find words or phrases relevant 
to these attributes. Based on these attributes, the system extracts from the contract the relevant 
sections warranting human review. If the system fails to analyze a contract, it directs it to human 
reviewers, for them to manually search the document. 
 
The bank reported that the solution saves lawyers and loan officers work 360,000 hours annually. 
 



 
Figure 21 – Topic and Text Modeling with NLP 

The Next Generation NLP Systems: 
More recent breakthroughs in NLP architecture, called Transformer models process words in 
relation to all the other words in a sentence, rather than one-by-one in order. Transformers have 
provided a paradigm shift in language modeling.  In contrast to RNNs, the main advantage of the 
Transformer models is that they are not sequential, which means they can be parallelized and 
scaled much more easily. But, in order to understand Transformers, we will need to dive into its 
core technique: the novel paradigm called Attention.   
 
The Attention technique allows us to get rid of the inherent sequential structure of RNNs, which 
hinders the parallelization of such models. When translating a sentence or transcribing an audio 
recording, a human agent would pay special attention to the word they are presently translating 
or transcribing. Neural networks can achieve this same behavior using Attention by focusing on 
part or a subset of the information.  The Attention technique (a revolutionary idea in sequence-
to-sequence systems such as translation models), has given rise to the new language models 
based on the transformer architecture.   
 
The transformer models provide several new capabilities that have caused an inflection in the 
language models such as: 

• The Transformer learns embeddings etc., in such a way that words that are relevant to 
one another are more aligned. 

• Transformer models are not sequential, which means they can be parallelized, and that 
bigger and bigger models can be trained by parallelizing the training  

• Transformers are massive pre-trained models, which can be then fine-tuned to specific 
language-related tasks. Transfer learning allows to re-use knowledge from previously 
built models, which can give a boost in performance, while demanding much less la-
belled training data 

• Another major new development in NLP is that you don’t need to have labeled data any-
more. Newer language models are typically trained on very large amounts of publicly 
available data, i.e., unlabeled text from the web, for instance to predict the next word in a 
sentence based on previous words or to predict masked parts of the sentence. This is 



called self-supervised learning, and it's in its own a very interesting and promising tech-
nique that will further grow the use of NLP and spawn new applications 

 
Since the introduction of Transformer architecture, numerous projects including Google’s BERT 
and OpenAI’s GPT series have built on this foundation and published performance results that 
handily beat existing state-of-the-art benchmarks. BERT released in 2018 by the Google research 
team, has been applied it to improving the query understanding capabilities of Google Search. By 
applying BERT models to both ranking and featured snippets in Search, BERT can help Search 
better understand one in 10 searches in the U.S. in English. 
 

 
Figure 22 – Transformers and Applications with NLP 
 
Key Takeaways – Advances in NLP are driving the growth in leveraging unstructured data.  
Transformer architectures are expanding fast due to the new capability for self-supervised learn-
ing that enable pre-training of NLP models on unlabeled data. As a result, many high impact ap-
plications such as – sentiment analysis, tracking relationships, legal and compliance, speech 
recognition and advanced chatbots, information retrieval, and ESG – will see adoption at scale.  
  

 
Figure 23 – Summary 



APPENDIX: NLP Frameworks 
 
Below, we highlight some of the more popular NLP platforms: 
 

• PyTorch is an open-source machine and deep learning library. It’s often used for NLP 
and integrates with Facebook AI’s newest RoBERTa project. It’s fast and flexible, sup-
ports GPU computation, and operates Recurring Neural Networks for things like classifi-
cation, tagging, and text generation. 

• SpaCy is fast and agile for cutting edge NLP by making it practical and accessible. It 
works with other well-known libraries like Gensim and Scikit Learn.  SpaCy is optimized 
for performance and allows developers a more natural path to more advanced NLP tasks 
like named entity recognition. 

• Facebook AI XLM/mBERT, is Facebook’s brand new multilingual language model that 
brings new training data sets to the table.  

• XLM-R achieved the best results to date on four cross-lingual benchmarks becoming the 
first multilingual model to outperform traditional monolingual baselines. It performs par-
ticularly well for low-resource languages like Urdu or Swahili. 

• https://odsc.com/boston/Baidu ERNIE, Otherwise known as “Enhanced Representation 
through kNowledge IntEgration,” ERNIE is a state of the art NLU framework offering 
pre-trained models that outperformed BERT in both English and Chinese. It includes 
continual pretraining and is word aware, structure-aware, and semantic aware. 

• TensorFlow, TensorFlow remains one of the most popular frameworks for machine 
and deep learning, but you can translate that power to NLP tasks. Its most famous appli-
cation is the Google Translate.   

• Stanford CoreNLP, Stanford’s generalized tool can perform sentiment analysis, boot-
strapped pattern learning, and named entity recognition across 53 languages with these 
neural models in addition to a whole suite of other common NLP tasks.  

• Keras runs on CPU or GPU, making it suitable for high level, deep learning. Keras fo-
cuses on rapid iterations, enabling users to execute experiments efficiently. Plus, you’ve 
got all the usual NLP functions, including parsing, machine translation, and classifica-
tion. 

• Chainer belongs to the Python ecosystem and is a standalone framework for deep learn-
ing. It comes in handy with RNNLM (recurrent neural network language models and 
modeling sequential data — think sentences in natural language.  

• Gensim was explicitly designed for sentiment analysis and unsupervised topic modeling. 
It’s a workhorse with NLP, working with raw, unstructured data like a champ. The Gen-
sim Word2Vec model helps with things like word embedding or processing documents. 
If you’re working with its specific use cases, it’s a game-changer. 

• Scikit-Learn is an excellent framework for implementing things like regression and clas-
sification data. People often use it for classifying news publications, for example, or even 
working with tweets. It’s beginner-friendly and well documented, allowing those just 
starting in the field to get started quickly 

 
 
 

https://pytorch.org/
https://opendatascience.com/exploring-the-deep-learning-framework-pytorch/
https://spacy.io/
https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM
https://odsc.com/boston/
https://github.com/PaddlePaddle/ERNIE
https://github.com/PaddlePaddle/ERNIE
https://www.tensorflow.org/tutorials/images/transfer_learning
https://opendatascience.com/?s=tensorflow
https://stanfordnlp.github.io/CoreNLP/
https://keras.io/
https://opendatascience.com/keras-for-new-data-scientists/
https://chainer.org/
https://opendatascience.com/odsc-east-2018-open-source-data-science-project-award-winner-the-chainer-framework/
https://pypi.org/project/gensim/
https://opendatascience.com/word2vec-the-world-of-word-vectors/
https://scikit-learn.org/stable/

